Abstract
Consider two independent random walks. By chance, there will be spells of association between them where the two processes move in the same direction, or in opposite direction. We compute the probabilities of the length of the longest spell of such random association for a given sample size, and discuss measures like mean and mode of the exact distributions. We observe that long spells (relative to small sample sizes) of random association occur frequently, which explains why nonsense correlation between short independent random walks is the rule rather than the exception. The exact figures are compared with approximations. Our finite sample analysis as well as the approximations rely on two older results popularized by Révész (Stat Pap 31:95–101, 1990, Statistical Papers). Moreover, we consider spells of association between correlated random walks. Approximate probabilities are compared with finite sample Monte Carlo results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.