Abstract
The number of studies investigating neighbourhood effects has increased rapidly over the last two decades. Although many of these studies claim to have found evidence for neighbourhood effects, most 'evidence' is likely the result of reversed causality. The main challenge in modelling neighbourhood effects is the (econometric) identification of causal effects. The most severe problem is selection bias as a result of selective sorting into neighbourhoods. This paper argues that in order to further our understanding of neighbourhood effects we should explicitly incorporate neighbourhood sorting into our models. Neighbourhood effect studies are in the situation where the processes behind one of its key methodological problems (selection bias) are also critical to fully understand the neighbourhood context itself. It is thus remarkable that residential mobility and neighbourhood sorting has been almost completely ignored in the neighbourhood effects literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.