Abstract

Hole trapping is often considered a parasitic component clouding the real degradation mechanism that is responsible for the negative bias temperature instability (NBTI). As such, it is often dealt with in a rather sketchy way that lacks physical rigor. We review hole trapping mechanisms that go beyond the conventional elastic tunneling mechanism by including structural relaxation and field effects. Contrary to some previous studies, it is shown that the rich spectrum of experimentally observed features of the most commonly observed defect in amorphous oxides, the E′ center, is consistent with experimental data available for NBTI. In particular, we show that a full model that includes the creation of E′ centers from their neutral oxygen vacancy precursors and their ability to be repeatedly charged and discharged prior to total annealing is consistent with a first stage of degradation. In a second stage, positively charged E′ centers can trigger the depassivation of P b centers at the Si/ SiO 2 interface or K N centers in oxynitrides to create an unpassivated silicon dangling bond. We formulate a complete model and evaluate it against experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.