Abstract

Multifrequency EPR spectroscopy and DFT calculations were used to investigate Hg(II) complexes with semiquinone radical ligands formed in a direct reaction between the metal ions and tannic acid (a polyphenol closely related to tannins). Because of the intricate structure of tannic acid a vast array of substituted phenolic compounds were tested to find a structural model mimicking its ability to react with Hg(II) ions. The components of the g matrix (the g tensor) determined from the high field (208GHz) EPR spectra of the Hg(II) complexes with the radical ligands derived from tannic acid and from the model compounds were analogous, indicating a similar coordination mode in all the studied Hg(II) complexes. Since catechol (1,2-dihydroxybenzene) was the simplest compound undergoing the reaction with Hg(II) it was selected for DFT studies which were aimed at providing an insight into the structural properties of the investigated complexes. Various coordination numbers and different conformations and protonation states of the ligands were included in the theoretical analyses. g Matrices were computed for all the DFT optimized geometries. A good agreement between the theoretical and experimental values was observed only for the model with the Hg(II) ion tetracoordinated by two ligands, one of the ligands being monoprotonated with the unpaired electron mainly localized on it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.