Abstract
AimsChildren with attention deficit hyperactivity disorder (ADHD) often present with deficits in fine motor control. The cortico-spinal tract (CST) is critical for voluntary motor control. Although neuroimaging work has identified anomalous microstructural properties in the CST in ADHD, no study to date has attempted to investigate the link between deficits in fine motor performance and microstructural properties of the CST in children with ADHD. This study aimed to address this gap using a novel fixel-based analysis (FBA). MethodsParticipants were 50 right-handed medication naïve children with a history of ADHD and 56 non-ADHD controls aged 9–11 years. Fine motor control was assessed using the Grooved Pegboard task. Children underwent high angular resolution diffusion MRI. Following pre-processing, FBA was performed and the semi-automated deep-learning TractSeg was used to delineate the CST bilaterally. Fibre density (FD), fibre cross-section (FC-log), and fibre density/cross-section (FDC) were extracted for each tract. ResultsChildren with ADHD performed significantly worse than non-ADHD children on the Grooved Pegboard task when using their non-dominant hand. They also demonstrated widespread significantly lower diffusion metrics in both CSTs compared to non-ADHD controls. However, no correlations were observed between Grooved Pegboard performance and diffusion metrics for the CST in either hemisphere. ConclusionsWhile we failed to detect a significant relationship between fine motor skill and FBA metrics in either group, this paper extends previous work by showing that children with ADHD and reduced fine motor competence demonstrate atypical microstructure within the CST relative to non-ADHD controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Neuro-Psychopharmacology and Biological Psychiatry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.