Abstract

A two-fold approach is considered to study hydrogen (H) diffusion characteristics in martensitic steels. Initially, a multi-trap stress coupled H diffusion finite element model was developed to investigate the role of various trap states on effective H trapping during a four point bend test. The calculations show that high angle boundaries are more influential in controlling H diffusion in presence of low initial (bulk) H concentrations, while dislocations can have more pronounced impact, when the bulk H concentration is higher. A microstructural model comprising of prior austenite grains and packets was further developed. The study highlights the importance of packet boundaries (PBs) moderating H diffusion in martensite microstructure. The presence of retained austenite content affecting H diffusion paths was also studied. Overall, this parametric study presents complementary techniques in numerical modeling, as well as implications on the role of various microstructural entities affecting H diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.