Abstract

Oil souring occurs when H2S is generated in oil reservoirs. This not only leads to operational risks and health hazards but also increases the cost of refining crude oil. Sulfate-reducing microorganisms are considered to be the main source of the H2S that leads to oil souring. Substrate competition between nitrate-reducing and sulfate-reducing microorganisms makes biosouring mitigation via the addition of nitrate salts a viable strategy. This study explores the shift in microbial community across different phases of biosouring and mitigation. Anaerobic sand-filled columns wetted with seawater and/or oil were used to initiate the processes of sulfidogenesis, followed by mitigation with nitrate, rebound sulfidogenesis, and rebound control phases (via nitrate and low salinity treatment). Shifts in microbial community structure and function were observed across different phases of seawater and oil setups. Marine bacterial taxa (Marinobacter, Marinobacterium, Thalassolituus, Alteromonas, and Cycloclasticus) were found to be the initial responders to the application of nitrate during mitigation of sulfidogenesis in both seawater- and oil- wetted columns. Autotrophic groups (Sulfurimonas and Desulfatibacillum) were found to be higher in seawater-wetted columns compared to oil-wetted columns, suggesting the potential for autotrophic volatile fatty acid (VFA) production in oil-field aquifers when seawater is introduced. Results indicate that fermentative (such as Bacteroidetes) and oil-degrading bacteria (such as Desulfobacula toluolica) play an important role in generating electron donors in the system, which may sustain biosouring and nitrate reduction. Persistence of certain microorganisms (Desulfobacula) across different phases was observed, which may be due to a shift in metabolic lifestyle of the microorganisms across phases, or zonation based on nutrient availability in the columns. Overall results suggest mitigation strategies for biosouring can be improved by monitoring VFA concentrations and microbial community dynamics in the oil reservoirs during secondary recovery of oil.

Highlights

  • Souring is a phenomenon in which the concentration of H2S increases in an oil reservoir

  • This study reports the microbial community structure and function associated with different phases of souring and mitigation in SWCs and OWCs to improve the understanding of microbial community shifts

  • This may be attributable to higher growth of specialist microorganisms in oil, or inhibition in oil caused by high concentrations of potentially antagonistic compounds

Read more

Summary

Introduction

Souring is a phenomenon in which the concentration of H2S increases in an oil reservoir. This increase in H2S leads to corrosion, poses a health risk to personnel involved in the production process, adversely affects downstream processes, and impacts the cost of oil production as well as the value of the produced oil itself (Gieg et al, 2011). Souring generally takes place during secondary recovery when external fluids, mainly seawater, are injected to increase reservoir pressure and displace oil toward the production well. Injection of seawater introduces nutrients and marine microbiota to the oil reservoirs, greatly modifying the biogeochemical setting and composition of the in situ microbial community. H2S production is a direct outcome of the use of sulfate as a terminal electron acceptor. Sulfidogenesis can be partly alleviated by discarding previously used water, recycling the water in combination with a mitigation strategy is economically and environmentally preferred

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.