Abstract

AbstractSurface defects are important in oxide surface chemistry, because they change not only the surface geometric structure, but also affect the local electronic structure. Scanning Tunneling Microscopy (STM) images with atomic-scale resolution, in combination with area-averaging surface spectroscopies, is an ideal tool to study local surface defects and their relationship to surface reactivity. We report STM results onTiO2(110) surfaces which show the surprising influence of bulk defects on surface properties. Thereduced crystals used in this and other surface science studies contain Ti interstitials and oxygen vacancies. Re-oxidation at elevated temperatures results in the growth of additional TiO2 layers with Ti coming from the bulk of the crystal and O from the gas phase. This often result in partially incomplete surface structures with many undercoordinated atoms. The esorption behavior of elemental S, dosed at room temperature, depends on the reduction state of the sample. This is explained by a mechanism where desorption froma weaklybound precursor state competes with the availability of new adsorption sites in the form of oxygen vacancies which migrate from the bulk to the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.