Abstract
The low intake of medusahead grass (Taeniatherum caput-medusae ssp. asperum) by sheep is attributed to the high silica content of the plant and its negative impact on digestibility, making this weed a successful competitor in grazed plant communities. The goals of this study were to determine the influence of (1) plant maturity stage (from late vegetative stage to beginning of senescence and thatch), (2) particle size (1, 5, 10 and 20 mm), and (3) high-quality feeds (alfalfa hay and a high-energy concentrate) on fermentation kinetics and apparent digestibility of medusahead relative to palatable feeds (alfalfa and tall fescue hays, and high-energy concentrates). In vitro gas production was estimated and apparent digestible organic matter (DOM) of the substrates was assessed after incubation. Medusahead from late vegetative to senescence stage had greater DOM (65% to 71%; P<0.05) than alfalfa hay (53%), similar to tall fescue hay (67%; P>0.05), and lower than the high-energy concentrates assayed (77% to 79%; P<0.05). Fermentation kinetics showed slow fermentation rates for medusahead relative to alfalfa (P<0.05), and a decline in fermentation rates with plant maturity (P<0.05). Fermentation rates of the substrates were reduced with particle sizes ⩾5 mm (P<0.05), and apparent DOM for medusahead declined as particle size increased, a relationship not found for alfalfa or tall fescue hays (P<0.05). No effects (P>0.05) on digestibility parameters were observed by the addition of high-quality feeds to medusahead. Slow fermentation kinetics and a significant inhibitory effect of particle size on apparent digestibility of organic matter contribute to explain the low use of medusahead by sheep. Such inhibitory effect may also underlie the lack of positive associative effects observed during the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.