Abstract

In this work, we consider the medical slot filling problem, i.e., the problem of converting medical queries into structured representations which is a challenging task. We analyze the effectiveness of two points: scattered keywords in user utterances and weak supervision with responses. We approach the medical slot filling as a multi-label classification problem with label-embedding attentive model to pay more attention to scattered medical keywords and learn the classification models by weak-supervision from responses. To evaluate the approaches, we annotate a medical slot filling data and collect a large scale unlabeled data. The experiments demonstrate that these two points are promising to improve the task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.