Abstract

Malaria remains a deadly disease that affected millions of people in 2016. Among the five Plasmodium (P.) parasites which contribute to malaria diseases in humans. P. falciparum is a lethal one which is responsible for the majority of the world-wide-malaria-related deaths. Since the banana-shaped stage V gametocytes play a crucial role in disease transmission, understanding the deformation of single stage V gametocytes may offer deeper insights into the development of the disease and provide possible targets for new treatment methods. In this study we used lattice Boltzmann-based simulations to investigate the effects of the stretching forces acting on infected red blood cells inside a slit-flow cytometer. The parameters that represent the cellular deformability of healthy and malaria infected red blood cells are chosen such that they mimic the deformability of these cells in a slit-flow cytometer. The simulation results show good agreement with experimental data and allow for studying the transportation of malaria infected red blood cell in blood circulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call