Abstract
As biometrics has evolved, the iris has remained a preferred trait because its uniqueness, lifetime stability and regular shape contribute to good segmentation and recognition performance. However, commercially deployed systems are characterized by strong acquisition constraints based on active subject cooperation, which is not always achievable or even reasonable for extensive deployment in everyday scenarios. Research on new techniques has been focused on lowering these constraints without significantly impacting performance while increasing system usability, and new approaches have rapidly emerged. Here we propose a novel fusion of different recognition approaches and describe how it can contribute to more reliable noncooperative iris recognition by compensating for degraded images captured in less constrained acquisition setups and protocols under visible wavelengths and varying lighting conditions. The proposed method was tested at the NICE.II (Noisy Iris Challenge Evaluation – Part 2) contest, and its performance was corroborated by a third-place finish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.