Abstract

Deep Neural Networks (DNNs) are being deployed in a wide range of settings today, from safety-critical applications like autonomous driving to commercial applications involving image classifications. However, recent research has shown that DNNs can be brittle to even slight variations of the input data. Therefore, rigorous testing of DNNs has gained widespread attention. While DNN robustness under norm-bound perturbation got significant attention over the past few years, our knowledge is still limited when natural variants of the input images come. These natural variants, e.g. a rotated or a rainy version of the original input, are especially concerning as they can occur naturally in the field without any active adversary and may lead to undesirable consequences. Thus, it is important to identify the inputs whose small variations may lead to erroneous DNN behaviors. The very few studies that looked at DNN's robustness under natural variants, however, focus on estimating the overall robustness of DNNs across all the test data rather than localizing such error-producing points. This work aims to bridge this gap. To this end, we study the local per-input robustness properties of the DNNs and leverage those properties to build a white-box (DeepRobust-W) and a black-box (DeepRobust-B) tool to automatically identify the non-robust points. Our evaluation of these methods on three DNN models spanning three widely used image classification datasets shows that they are effective in flagging points of poor robustness. In particular, DeepRobust-W and DeepRobust-B are able to achieve an F1 score of up to 91.4% and 99.1%, respectively. We further show that DeepRobust-W can be applied to a regression problem in another domain. Our evaluation on three self-driving car models demonstrates that DeepRobust-W is effective in identifying points of poor robustness with F1 score up to 78.9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.