Abstract

The wireless body sensor network (BSN) is used to detect and transmit physiological data such as vital signs by using radio wave communication. It offers a large saving potential for future healthcare applications because hospitalization of patients with chronic diseases can be kept at a minimum. The radio wave communication on the human body is impacted by the dielectric properties, the posture, and the movement of the body. Under these conditions a highly dynamic link-state and link quality are observed. In this paper we present a study of the link layer behavior of wireless BSNs operating at 2.45 GHz. We report on a wearable body-centric network operation in realistic environments from which we characterize the wireless channels based on a novel test framework. Our test framework uses a 200 ms time resolution for sampling of the wireless links between on-body sensor nodes. We record the received signal strength indicator and link quality indicator values as well as the packet delivery statistics in real-time. Based on recorded experiments we quantify the potential packet delivery performance and energy gain that can be obtained by using dynamic routing and adaptive transmission power schemes, respectively. Subsequently we formulate a set of requirements for the next revision of our prototype wireless BSN developed at Aarhus University School of Engineering in Denmark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.