Abstract

We present a mechanistic study on the formation and dynamic changes of a ligand‐based heterogeneous Pd catalyst for chemoselective hydrogenation of α,β‐unsaturated aldehyde acrolein. Deposition of allyl cyanide as a precursor of a ligand layer renders Pd highly active and close to 100 % selective toward propenol formation by promoting acrolein adsorption in a desired configuration via the C=O end. Employing a combination of real‐space microscopic and in‐operando spectroscopic surface‐sensitive techniques, we show that an ordered active ligand layer is formed under operational conditions, consisting of stable N‐butylimine species. In a competing process, unstable amine species evolve on the surface, which desorb in the course of the reaction. Obtained atomistic‐level insights into the formation and dynamic evolution of the active ligand layer under operational conditions provide important input required for controlling chemoselectivity by purposeful surface functionalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.