Abstract

We study the observational implications of a class of inflationary models wherein the inflaton is coupled to the Einstein tensor through a generalized nonminimal derivative coupling (GNMDC). In particular, we explore whether these models can generate suitable features in the primordial spectrum of curvature perturbations as a possible explanation for the large-scale anomalies associated with the angular power spectrum of CMB temperature anisotropies. We derive model-independent constraints on the GNMDC function for such a scenario, considering both the scalar and tensor perturbations. We modify cosmomc to accommodate our GNMDC framework and investigate different classes of inflationary models using a fully consistent numerical approach. We find that the hilltop-quartic model with a specific choice of the GNMDC function provides a considerable improvement over the best-fit reference $\mathrm{\ensuremath{\Lambda}}\mathrm{CDM}$ model with a nearly scale-invariant power spectrum. While the large-scale structure observations should be able to provide independent constraints, future CMB experiments, such as CMB-S4 and CMB-Bharat, are expected to constrain further the parameter space of such beyond canonical single-field inflationary models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.