Abstract

AbstractIon implantation, specified by parameters like ion energy, ion fluence, ion flux and sub-strate temperature, has become a well-established tool to synthesize buried low-dimensional nanostructures. In general, in ion beam synthesis the evolution of nanostructures is determined by the competition between ballistic and thermodynamic effects. A kinetic 3D lattice Monte-Carlo model is introduced, which allows for a proper incorporation of collisional mixing and phase separation within supersaturated solid-solutions. It is shown, that for both the ballistically and thermodynamically dominated regimes, the Gibbs-Thomson relation is the key ingredient in understanding nanocluster evolution. Various aspects of precipitate evolution during implantation, formation of ordered arrays of nanophase domains by focused ion implantation and compound nanocluster synthesis are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.