Abstract

Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between a metal electrode and electron transport layer (ETL) is lacking. Here, a significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells from 7.5% to 15.5% is shown by inserting a fulleropyrrolidine interlayer between the silver electrode and ETL. The interface between the metal electrode and ETL is carefully examined using a variety of electrical and surface potential techniques. Electrochemical impedance spectroscopy (EIS) measurements demonstrate that the interlayer enhances recombination resistance, increases electron extraction rate, and prolongs free carrier lifetime. Kelvin probe force microscopy (KPFM) is used to map the surface potential of the metal electrode and it indicates a uniform and continuous work function decrease in the presence of the fulleropyrrolidine interlayer. Additionally, the planar heterojunction fullerene/perovskite solar cells are shown to have good stability under ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.