Abstract
Owing to the formation of interface and new feature of which, the properties of nanodielectrics can be improved. ‘Hard/soft interface’ and its trap distribution can be tailored by functionalised groups. Molecular simulation results show that the interaction energy and electrostatic potential are larger for the soft interface, which indicates the greater bonding strength with the polymer matrix and electrostatic force on charge carriers. Charge transport simulation indicates that the accumulation of homo-charges would form a reverse electric field and distort electric field distribution. The injection depth would be restricted at the vicinity of sample/electrodes due to the greater trapping effect of deep traps, thus weakening the distortion in the sample bulk, thereby decreasing carrier energy and delaying the formation of impact ionisation. Based on the accumulation of carrier energy Φ = Eeλ, the idea of suppressing electron free path and carrier energy to enhance the insulation breakdown is confirmed. The classified effects of nanofillers during dc breakdown and corona-resistant are further understood from carrier energy. The introduced interfacial trap is effective in trapping carriers due to the low carrier energy under dc voltage, while ineffective in blocking the energetic charges during corona-discharge, but nanoparticles exert blocking and scattering effect against the energetic charges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.