Abstract

Next generation solid-state batteries (SSB) will need to leverage high voltage cathodes, as well as metallic anodes to achieve the realistic performance targets necessary to replace liquid electrolyte-based batteries in cutting-edge applications including electric vehicles. However, limitations arising from mass and charge transports, kinetics and chemo-mechanical degradation at the electrode | electrolyte interface limit the performance of present day SSBs. Optimizing composite cathode architecture, which is an integral part of solid-state batteries, is vital to realize the high-energy density and high-performance goals for next-generation solid-state batteries. Cathode architecture needs to be optimized for high loadings of active material, well-percolated ion and electron transport pathways and increased resilience against electrochemical stresses. This paper provides a first report of framework for geometric modeling of composite cathode architectures and evaluates the impact of cathode architecture on cell-level energy density using hierarchical models. Packing around primary and secondary active material particles are simulated for a range of active material particle size and solid electrolyte size distributions in the composite cathode. Impact of packing architecture on processing parameters of a given cathode composition and thickness, as well as on achievable energy density is evaluated for a range of commonly used solid electrolyte and cathode materials. Overall, the proposed framework offers a facile exploratory methodology for establishing initial metrics for scalable processing of practical and competent SSBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call