Abstract

To develop an advanced human–robot interaction system, it is important to first understand how human beings learn to perceive, think, and act in an ever-changing world. In this paper, we propose an intention understanding system that uses an Object Augmented-Supervised Multiple Timescale Recurrent Neural Network (OA-SMTRNN) and demonstrate the effects of perception–action connected learning in an artificial agent, which is inspired by psychological and neurological phenomena in humans. We believe that action and perception are not isolated processes in human mental development, and argue that these psychological and neurological interactions can be replicated in a human–machine scenario. The proposed OA-SMTRNN consists of perception and action modules and their connection, which are constructed of supervised multiple timescale recurrent neural networks and the deep auto-encoder, respectively, and connects their perception and action for understanding human intention. Our experimental results show the effects of perception–action connected learning, and demonstrate that robots can understand human intention with OA-SMTRNN through perception–action connected learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.