Abstract

Safety Performance Functions (SPFs) are critical tools in the management of highway safety projects. SPFs are used to predict the average number of crashes per year at a location, such as a road segment or an intersection. The Highway Safety Manual (HSM) provides default safety performance functions (SPFs), but it is recommended that states in the U.S. develop jurisdiction-specific SPFs using local crash data. To do this for the state of Tennessee, crash and road inventory data were integrated for multi-lane rural highway segments for the years 2013−2017. In addition to developing SPFs similar to those contained in the HSM, this study applied a new methodology to capture variation in crashes in both space and time. Specifically, Geographically and Temporally Weighted Regression (GTWR) models for the localization of SPFs were developed. The new methodology incorporates temporal aspects of crashes in the models because the impact of a specific variable on crash frequency may vary over time due to several reasons. Results indicate that GTWR models remarkably outperform the traditional regression models by capturing spatio-temporal heterogeneity. Most parameter estimates were found to vary substantially across space and time. In other words, the association of contributing variables with the number of crashes can vary from one region or period of time to another. This finding weakens the idea of transferring default SPFs to other states and applying a single localized SPF to all regions of a state. Enabled by growing computational power, these results emphasize the importance of accounting for spatial and temporal heterogeneity and developing highly localized SPFs. The methodology of this study can be used by researchers to follow the temporal trend and location of critical factors to identify sites for safety improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.