Abstract
In this work, a detailed study is conducted to understand how ligand substitution influences the CO2 and N2 adsorption properties of two highly crystalline sodalite metal-organic frameworks (MOFs) known as Cu-BTT (BTT-3 = 1,3,5-benzenetristetrazolate) and Cu-BTTri (BTTri-3 = 1,3,5-benzenetristriazolate). The enthalpy of adsorption and observed adsorption capacities at a given pressure are significantly lower for Cu-BTTri compared to its tetrazole counterpart, Cu-BTT. In situ X-ray and neutron diffraction, which allow visualization of the CO2 and N2 binding sites on the internal surface of Cu-BTTri, provide insights into understanding the subtle differences. As expected, slightly elongated distances between the open Cu2+ sites and surface-bound CO2 in Cu-BTTri can be explained by the fact that the triazolate ligand is a better electron donor than the tetrazolate. The more pronounced Jahn-Teller effect in Cu-BTTri leads to weaker guest binding. The results of the aforementioned structural analysis were complemented by the prediction of the binding energies at each CO2 and N2 adsorption site by density functional theory calculations. In addition, variable temperature in situ diffraction measurements shed light on the fine structural changes of the framework and CO2 occupancies at different adsorption sites as a function of temperature. Finally, simulated breakthrough curves obtained for both sodalite MOFs demonstrate the materials' potential performance in dry postcombustion CO2 capture. The simulation, which considers both framework uptake capacity and selectivity, predicts better separation performance for Cu-BTT. The information obtained in this work highlights how ligand substitution can influence adsorption properties and hence provides further insights into the material optimization for important separations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemistry of materials : a publication of the American Chemical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.