Abstract
Magnetic core–shell nanostructures offer a viable solution for tunable magnetism via nanoscale exchange interactions in a single-component unit. A typical synthetic approach for monodisperse bimagnetic ferrite core–shell nanostructures employs the seed-mediated growth method using the heating-up process. Understanding magnetic core–shell interface formation and their interactions is crucial; however, the magnetical persistence of the pristine core component during the heating-up process is unclear. Here, we elucidate the enhancement mechanism of magnetic anisotropy when the hard–soft core–shell nanostructures are formed with the ultrathin shell layer. The heating-up effect on the core component exhibits the coordination change of ligand chemisorption with surface metal ions, which leads to a substantial increase in surface anisotropy due to enhanced spin–orbit couplings. We further demonstrate that the selection of metal precursors and surfactants for additional shell layer formation is important. The kin...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.