Abstract

The centrality–lethality rule, i.e., high-degree proteins or hubs tend to be more essential than low-degree proteins in the yeast protein interaction network, reveals that a protein’s central position indicates its important function, but whether and why hubs tend to be more essential have been heavily debated. Here, we integrated gene expression and functional module data to classify hubs into four types: non-co-expressed non-co-cluster hubs, non-co-expressed co-cluster hubs, co-expressed non-co-cluster hubs and co-expressed co-cluster hubs. We found that all the four hub types are more essential than non-hubs, but they also show different enrichments in essential proteins. Non-co-expressed non-co-cluster hubs play key role in organizing different modules formed by the other three hub types, but they are less important to the survival of the yeast cell. Among the four hub types, co-expressed co-cluster hubs, which likely correspond to the core components of stable protein complexes, are the most essential. These results demonstrated that our classification of hubs into four types could better improve the understanding of gene essentiality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call