Abstract
IntroductionFatigue is one of the riskiest causes of traffic accidents threatening road safety. Due to lack of proper criteria, the identification of fatigue-related accidents by police officers largely depends on inferential evidence and their own experience. As a result, many fatigue-related accidents are misclassified and the harmfulness of fatigue on road safety is misestimated. MethodIn this paper, a joint model framework is introduced to analyze factors contributing to misclassification of a fatigue-related accident in police reports. Association rule data mining technique is employed to identify the potential interactions of factors, and logistic regression models are applied to analyze factors that hinder police officers' identification of fatigue-related accidents. Using the fatigue-related crash records from Guangdong Province during 2005–2014, factors contributing to the false positive and false negative detection of the fatigue-related accident have been identified and compared. ResultsSome variables and interactions were identified to have significant impacts on fatigue-related accident detection. ConclusionsBased on the results, it can be inferred that the stereotype of certain groups of drivers, crash types, and roadway conditions affects police officers' judgment on fatigue-related accidents. Practical applicationsThis finding can provide useful information for training police officers and build better criteria for fatigue identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.