Abstract

AbstractIdentification and pairing of hydrologic events form the basis of various analyses, from identifying events for the calibration of hydrologic models, to calculation of event runoff coefficients for catchment characterization. Despite this, there is no unified approach for identifying hydrologic events. Here, using the R package, hydroEvents (https://CRAN.R-project.org/package=hydroEvents), we compare multiple methods of extracting and pairing hydrologic events focussing on the relationship between rainfall and runoff. We find the four common analytical approaches used to identify runoff events—based on either event threshold, local maxima/minima, or proportion of baseflow contribution, give similar results. However, when rainfall events are paired to runoff, the type of algorithm and the direction of pairing (either from rainfall to runoff, or runoff to rainfall) make a considerable difference to the final event pairs identified and resulting analyses. Here, we demonstrate the value of automated event extraction and pairing algorithms for large‐sample hydrology analysis by calculating event runoff coefficients across Australia. Our results show that climatology is a key driver of catchment rainfall‐runoff response with much of Australia dominated by excess rainfall runoff generation. However, our results also show that the variability due to pairing method can introduce a variability equal to that of the climatology due to biasing the runoff mechanism within the sample. With this analysis we demonstrate the importance of systematic and consistent approaches to hydrologic characterization when identifying and pairing hydrological events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call