Abstract

Abstract An algorithm that derives the nonprecipitating cloud liquid water path Wcld from CloudSat using a surface reference technique (SRT) is presented. The uncertainty characteristics of the SRT are evaluated. It is demonstrated that an accurate analytical formulation for the pixel-scale precision can be derived. The average precision of the SRT is estimated to be 34 g m−2 at the individual pixel scale; however, precision systematically decreases from around 30 to 40 g m−2 as cloud fraction varies from 0% to 100%. The retrievals of clear-sky Wcld have a mean bias of 0.9 g m−2. Output from a large-eddy simulation coupled to a radar simulator shows that an additional bias of −8% may result from nonuniformity within the footprint of cloudy pixels. The retrieval yield for the SRT, measured relative to all warm clouds over ocean between 60°N and 60°S latitude is 43%. The SRT Wcld is compared with one estimate of Wcld from the Moderate Resolution Imaging Spectroradiometer (MODIS) using an adiabatic cloud profile and an effective radius derived from 3.7-μm reflectance. A strong correlation between the mean MODIS Wcld and SRT Wcld is found across diverse cloud regimes, but with biases in the mean Wcld that are cloud-regime dependent. Overall, the mean bias of the SRT relative to MODIS is −13.1 g m−2. Systematic underestimates of Wcld by the SRT resulting from nonuniform beamfilling cannot be ruled out as an explanation for the retrieval bias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call