Abstract

Coastal seas are highly productive systems, providing an array of ecosystem services to humankind, such as processing of nutrient effluents from land and climate regulation. However, coastal ecosystems are threatened by human-induced pressures such as climate change and eutrophication. In the coastal zone, the fluxes and transformations of nutrients and carbon sustaining coastal ecosystem functions and services are strongly regulated by benthic biological and chemical processes. Thus, to understand and quantify how coastal ecosystems respond to environmental change, mechanistic modelling of benthic biogeochemical processes is required. Here, we discuss the present model capabilities to quantitatively describe how benthic fauna drives nutrient and carbon processing in the coastal zone. There are a multitude of modeling approaches of different complexity, but a thorough mechanistic description of benthic-pelagic processes is still hampered by a fundamental lack of scientific understanding of the diverse interactions between the physical, chemical and biological processes that drive biogeochemical fluxes in the coastal zone. Especially shallow systems with long water residence times are sensitive to the activities of benthic organisms. Hence, including and improving the description of benthic biomass and metabolism in sediment diagenetic as well as ecosystem models for such systems is essential to increase our understanding of their response to environmental changes and the role of coastal sediments in nutrient and carbon cycling. Major challenges and research priorities are (1) to couple the dynamics of zoobenthic biomass and metabolism to sediment reactive-transport in models, (2) to test and validate model formulations against real-world data to better incorporate the context-dependency of processes in heterogeneous coastal areas in models and (3) to capture the role of stochastic events.

Highlights

  • Coastal marine ecosystems have high ecological and societal values

  • We only focus on the opportunities and challenges when integrating models of benthic fauna and the biogeochemistry of coastal ecosystems

  • We include examples of both natural assemblages of benthic fauna and assemblages influenced by human intervention, but exclude a wealth of models dealing with seafood farming

Read more

Summary

Introduction

Coastal marine ecosystems have high ecological and societal values. Over the last century riverine inputs of nitrogen (N) and phosphorus (P) to the oceans have increased from 19 to 37 Tg N yr−1 and from 2 to 4 Tg P yr−1 (Beusen et al, 2016). These increases were even more substantial as observed in the United States, Europe and China; in the Baltic Sea N and P loads increased by roughly a factor of three and six, respectively (Gustafsson et al, 2012). The riverine N flux has increased by an order of magnitude to coastal waters of China within thirty years, while P export has tripled between 1970 and 2000 (Qu and Kroeze, 2012; Cui et al, 2013)

Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.