Abstract

A new way of understanding entropy as a macroscopic property is presented. This is based on the fact that heat flows from a hot body to a cold one even when the hot one is smaller and has less energy. A quantity that determines the direction of flow is shown to be the increment of heat gained (q) divided by the absolute temperature (T). The same quantity is shown to determine the direction of other processes taking place in isolated systems provided that q is determined by the state (s) of the system. Entropy emerges as the potent energy of a system [Σ(qs/T)], the potency being determined by 1/T. This is shown to tie in with the statistical mechanical interpretation of entropy. The treatment is shorter than the traditional one based on heat engines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.