Abstract

Hydrogen is a promising energy carrier, but its onboard application is limited by the need for compact, low-pressure storage solutions. Solid-state complex metal hydride systems, such as MgB2/Mg(BH4)2, offer high storage capacities but suffer from sluggish kinetics and poor reversibility. One avenue for improving reactivity is to introduce metal dopants to alter electronic and atomic properties, but the role of these chemical additives remains poorly understood, particularly for the hydrogenation reaction. In this work, we used density functional theory calculations on model MgB2 systems to rationalize the potential role of metal dopants in destabilizing B–B bonding within the MgB2 lattice. We carried out detailed electronic structure analyses for 28 different metal dopant adatoms to identify properties that contribute to a dopant’s efficacy. Based on the simulation results, we propose that an intermediate ionic and covalent character of the bonds between adatoms and B atoms is desirable for facilitating charge redistribution, disrupting the B–B bond network, and promoting H2 dissociation and H atom chemisorption on MgB2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.