Abstract

Understanding the transformation process of CH4 hydrate to CO2 hydrate is crucial to develop the CH4CO2 replacement technique for CH4 production and CO2 sequestration. Ab initio calculations show that the transformation will slightly distort the host lattice and decrease the binding strength of guest molecules, but it is a thermodynamically spontaneous process dominated by the entropic contribution. Moreover, ab initio molecular dynamics simulations suggest that the dynamics of the host lattice is independent on the guest molecules, while CO2 in hydrate exhibits slower translational and rotational motion than CH4 in hydrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.