Abstract

Crofer 22 APU is used as metallic interconnects in stacking solid oxide fuel cells (SOFCs) operated at elevated temperatures (above 700 °C) owing to their excellent oxidation resistance. Understanding the protective layer formation in the initial oxidation stage would be useful for optimizing and designing protective coatings for extended life. Initial stage oxidation of Crofer 22 APU steel using surface analytical tools such as glow discharge optical emission spectroscopy (GD-OES), grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy, and atomic force microscopy (AFM) are studied in the paper. An oxidation test on as-received Crofer 22 APU steel was carried out in a controlled atmosphere (0.01 Pa) in an in-situ high-temperature X-ray diffraction (XRD) stage at 950 °C. Normal XRD showed no indication of oxidation, while GIXRD revealed the formation of two-layer oxides: Top layer spinel MnCr2O4 and fine-grained inner layer Cr2O3, which was confirmed and quantified by GD-OES depth profiling. The Cr2O3 formed initially led to the formation of MnCr2O4 spinel during the initial stage. The rapid diffusion of Mn through the fine-grained Cr2O3 layer results in an increased growth rate of MnCr2O4 spinel on the top of the fine-grained Cr2O3 layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call