Abstract

Present work reports numerical understanding of interfacial dynamics during co-flow of vapor and liquid phases of water inside a typical Boiling Water Reactor (BWR), consisting of a nuclear fuel rod bundle assembly of 7 pins in a circular array. Two representative spacings between rods in a circular array are used to carry out the simulation. In literature, flow boiling in a nuclear reactor is dealt with mechanistic models or averaged equations. Hence, in the present study using the Volume of Fluid (VOF) based multiphase model, a detailed numerical understanding of breaking and making in interfaces during flow boiling in BWR is targeted. Our work will portray near realistic vapor bubble and liquid flow dynamics in rod bundle scenario. Constant wall heat flux for fuel rod and uniform velocity of the liquid at the inlet patch is applied as a boundary condition. The saturation properties of water are taken at 30 bar pressure. Flow boiling stages involving bubble nucleation, growth, merging, local dry-out, rewetting with liquid patches, and complete dry-out are illustrated. The dry-out phenomenon with no liquid presence is numerically observed with phase fraction contours at various axial cut-sections. The quantification of the liquid phase fraction at different axial planes is plotted over time, emphasizing the progressive dry-out mechanism. A comparison of liquid-vapor distribution for inner and outer rods reveals that the inner rod's dry-out occurs sooner than that of the outer rod. The heat transfer coefficient to identify the heat dissipation capacity of each case is also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.