Abstract

Existing video-based facial expression recognition techniques analyze the geometry-based and appearance-based information in every frame as well as explore the temporal relation among frames. On the contrary, we present a new image-based representation and an associated reference image called the emotion avatar image (EAI), and the avatar reference, respectively. This representation leverages the out-of-plane head rotation. It is not only robust to outliers but also provides a method to aggregate dynamic information from expressions with various lengths. The approach to facial expression analysis consists of the following steps: 1) face detection; 2) face registration of video frames with the avatar reference to form the EAI representation; 3) computation of features from EAIs using both local binary patterns and local phase quantization; and 4) the classification of the feature as one of the emotion type by using a linear support vector machine classifier. Our system is tested on the Facial Expression Recognition and Analysis Challenge (FERA2011) data, i.e., the Geneva Multimodal Emotion Portrayal-Facial Expression Recognition and Analysis Challenge (GEMEP-FERA) data set. The experimental results demonstrate that the information captured in an EAI for a facial expression is a very strong cue for emotion inference. Moreover, our method suppresses the person-specific information for emotion and performs well on unseen data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.