Abstract

A new computer modeling system for determining crossbridge cycle dynamics is described. The transition rates from one state to another are defined by rate coefficients that can either be constant or vary with the position of the crossbridge relative to the thin-filament attachment site. This leads to a system of differential equations defining the rates of change for the fractions of bridges in each state. Solutions for this system of equations are obtained at specified times during and after a length change using a method for systems with widely varying time constants (C.W. Gear, 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs. NJ). Crossbridges are divided into discrete populations that differ both in their axial displacement with respect to thin filament attachment sites and with respect to the twist of the actin helix. Separate solutions are made for the individual populations and are then averaged to obtain the ensemble response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.