Abstract

This article examines three spatiotemporal methods used for analyzing of infectious diseases, with a focus on COVID-19 in the United States. The methods considered include inverse distance weighting (IDW) interpolation, retrospective spatiotemporal scan statistics and Bayesian spatiotemporal models. The study covers a 12-month period from May 2020 to April 2021, including monthly data from 49 states or regions in the United States. The results show that the spread of COVID-19 pandemic increased rapidly to a high value in winter of 2020, followed by a brief decline that later reverted into another increase. Spatially, the COVID-19 epidemic in the United States exhibited a multi-centre, rapid spread character, with clustering areas represented by states such as New York, North Dakota, Texas and California. By demonstrating the applicability and limitations of different analytical tools in investigating the spatiotemporal dynamics of disease outbreaks, this study contributes to the broader field of epidemiology and helps improve strategies for responding to future major public health events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.