Abstract

In situ scanning electrochemical microscopy (SECM) was applied for the first time to study the copper activation and subsequent xanthate adsorption on sphalerite. The corresponding surface compositions were analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The probe approach curve (PAC) using SECM shows that unactivated and activated sphalerite surfaces have negative current feedback and partially positive current feedback, respectively, suggesting that CuxS is formed on the sphalerite after copper activation. The copper activation of sphalerite strongly depends on the surface heterogeneity (e.g., presence of polishing defects, chemical composition), impacting the subsequent xanthate adsorption process. The SECM, ToF-SIMS, and XPS analyses show that during the copper activation the polishing defects, which have high excess surface energy, tend to consume more copper ions, resulting in Cu-rich regions by forming CuS-like species, while Fe oxid...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.