Abstract

Low-temperature flames such as cool flames, warm flames, double flames, and auto-ignition assisted flames play a critical role in the performance of advanced engines and fuel design. In this paper, an overview of the recent progresses in understanding low-temperature flames and dynamics as well as their impacts on combustion, advanced engines, and fuel development will be presented. Specifically, at first, a brief review of the history of cool flames is made. Then, the recent experimental studies and computational modeling of the flame structures, dynamics, and burning limits of non-premixed and premixed cool flames, warm flames, and double flames are presented. The flammability limit diagram and the temperature-dependent chain-branching reaction pathways, respectively, for hot, warm, and cool flames at elevated temperature and pressure will be discussed and analyzed. After that, the effect of low temperature auto-ignition of auto-igniting mixtures at high ignition Damköhler numbers at engine conditions on the propagation of cool flames, warm flames, and double flames as well as turbulent flames will be discussed. Finally, a new platform using low temperature flames for the development and validation of chemical kinetic models of alternative fuels will be presented. Discussions of future research of the dynamics and control of low temperature flames under engine conditions will be made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.