Abstract

The extragalactic X-ray binary IC 10 X-1 has attracted attention as it is possibly the host of the most massive stellar-mass black-hole (BH) known to date. Here we consider all available observational constraints and construct its evolutionary history up to the instant just before the formation of the BH. Our analysis accounts for the simplest possible history that includes three evolutionary phases: binary orbital dynamics at core collapse, common envelope (CE) evolution, and evolution of the BH--helium star binary progenitor of the observed system. We derive the complete set of constraints on the progenitor system at various evolutionary stages. Specifically: right before the core collapse event, we find the mass of the BH immediate progenitor to be > 31 Msun (at 95% of confidence, same hereafter). The magnitude of the natal kick imparted to the BH is constrained to be < 130 km/s. Furthermore, we find that the "enthalpy" formalism recently suggested by Ivanova & Chaichenets is able to explain the existence of IC 10 X-1 without the need of invoking unreasonably high CE efficiencies. With this physically motivated formalism, we find that the CE efficiency required to explain the system is in the range of 0.6--1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.