Abstract

Chromium slag is a solid waste of chromium salt production, which contains highly toxic Cr(VI) and significant amounts of valuable metals, such as Fe and Cr. Recycling chromium slag as a raw sintering material in sintering-ironmaking processes can simultaneously reduce toxic Cr(VI) and recover valuable metals. A micro-sintering experiment, compressive strength test, microhardness test, and first-principles calculation are performed to investigate the influence of Cr2O3 on the sintering microstructure and mechanical properties of the silico-ferrite of calcium and aluminum (SFCA) in order to understand the basis of the sintering process with chromium slag addition. The results show that the microstructure of SFCA changes from blocky to interwoven, with further increasing Cr2O3 content from 0 wt% to 3 wt%, and transforms to blocky with Cr2O3 content increasing to 5 wt%. Cr2O3 reacts with Fe2O3 to form (Fe1-xCrx)2O3 (0 ≤ x ≤ 1), which participates in forming SFCA. With the increase in Cr doping concentrations, the hardness of SFCA first decreases and then increases, and the toughness increases. When Cr2O3 content increases from 0 wt% to 3 wt%, the SFCA microhardness decreases and the compressive strength of the sintered sample increases. Further increasing Cr2O3 contents to 5 wt%, the SFCA microhardness increases, and the compressive strength of sintered sample decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.