Abstract

Winter chilling is of central importance in the phenology of temperate annual and perennial plants. Chilling accelerates flowering through the process of vernalization and breaks both bud and seed dormancy, permitting the onset of growth in the spring. The quantitative effects of chilling in floral promotion in winter annual Arabidopsis accessions are well-documented, but very little is known about the basic physiology underlying summer annual responses to winter chilling, which acts on seeds within the soil seed bank. Here, we analyse the response of wild accessions to extended chilling in seeds, and explore the interaction between seed-maturation temperature and chilling responses. We show that two weeks of chilling induces secondary dormancy, and that this time period is not dependent on seed-maturation temperature. In addition, we found that seeds for most accessions set under simulated summer conditions in the laboratory are unable to overwinter in the soil seed bank, as they germinate without light during extended chilling treatments. This shows that these seeds are committed to re-establishment in the same growing season. Understanding how winter chilling affects the timing of Arabidopsis phenology will enable us to explore the genetics behind adaptation to changing climates, and inform rational approaches to breeding crops with improved performance under new climate scenarios and develop a systems ecology of Arabidopsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call