Abstract

Intermetallic clathrates exhibit great variability with respect to elemental composition and distribution. While this provides a lot of flexibility for tuning properties, it also poses a challenge with regard to developing a comprehensive understanding of these systems. Here, we employ a combination of alloy cluster expansions and density functional theory calculations to exhaustively sample the compositional space with ab initio accuracy. We apply this methodology to study chemical ordering and related properties in the clathrate systems Ba8GaxGe46–x, Ba8GaxSi46–x, Ba8AlxGe46–x, and Ba8AlxSi46–x as a function of composition and temperature. We achieve very good agreement with the available experimental data for the site occupancy factors (SOFs) even for stoichiometries outside the composition range considered during construction of the cluster expansions. This validation enables us to reconcile the variations in the experimental data and explain nonmonotonic variations of the SOFs. In particular, we prov...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.