Abstract

Phantoms used for high intensity focused ultrasound (HIFU) applications require rigorous evaluation of material properties since, locally, the material experiences extreme changes in temperature and stresses with the HIFU treatment. Here we present the testing of an agar/gelatin phantom intended for both acoustic radiation force imaging (ARFI) and HIFU applications. The phantom shear modulus, speed of sound, attenuation, and thermal properties were all evaluated over the range of room temperature to 80 °C. With the exception of the thermal properties, all measurements were taken during both heating and cool down. Cavitation threshold and melting point were also tested. The change in material sound speed and thermal properties with temperature were quasireversible and similar to that of water. Material attenuation showed a slight decrease with temperature, but appeared to also be reversible. Shear modulus decreased significantly with temperature, going to near zero. The response was not reversible, returni...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.