Abstract

This paper describes a modeling approach to interpret the C-band synthetic aperture radar (SAR) data from wheat canopies as provided by European Remote Sensing (ERS) satellites, RADARSAT, and the forthcoming Environmental Satellite/Advanced Synthetic Aperture Radar (ENVISAT/ASAR) satellite. At a first step, the results of a first-order modeling were compared to ERS data and scatterometer data over the growing season at two different test sites. The prediction by first-order approach was in disagreement with the data from stem extension stage to soft ripening stage. The first-order approach was found to overestimate the attenuation at vertical (V) polarization, resulting in a predicted backscattering coefficient one order of magnitude lower than that observed by the SAR system. To improve the prediction, a multiple-scattering modeling based on numerical solution of multiple-scattering Foldy-Lax equation was used. The multiple-scattering modeling provides better backscatter estimates at vertical-vertical (VV) polarization for both test sites. Then, the model is used to derive the prevailing interactions mechanisms at horizontal-horizontal (HH) and VV polarizations and 23/spl deg/ and 40/spl deg/ of incidence angle. Finally, the retrieval of crop parameters from C-band SAR data is addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.