Abstract

Ferritic-martensitic steels are attractive candidates for structural materials in next generation nuclear reactor systems due to their resistance to radiation induced swelling. Cavity and dislocation loop evolution was characterized in dual ion irradiated T91 steel in three separate irradiation campaigns examining single parameter dependencies of temperature, helium co-injection rate, and damage rate. Irradiations resulted in bimodal cavity size distributions across nearly all ranges of experimental parameters. It was determined that irradiation temperature and helium co-injection rate are stronger influences on bubble stability and the transition from bubbles to voids than is the irradiation damage rate. At low helium injection rates all helium is in vacancy clusters that evolve into bubbles or voids. At high helium injection rates, bubbles become saturated with helium resulting in accumulation of helium at other traps such as dislocation loops. At intermediate levels of He that should aid in the nucleation of bubbles and enhance swelling, the high density of sinks in the F-M microstructure suppresses bubble nucleation and therefore, the onset of swelling. At high enough temperatures, helium is only in bubbles as other strong helium traps, such as dislocation loops, did not form. The mechanism of bubble to void transition was found to shift from being driven by the accumulation of helium to the critical bubble at low damage rates to being driven by spontaneous formation by stochastic vacancy fluctuation at high damage rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.