Abstract

Recent clinical studies have reported not only changes in bone mineral density in patient populations but also changes in bone strength determined using finite element modeling. Finite element modeling is a technique well established in engineering but unfamiliar to many clinicians and basic biologists. Here, we provide a conceptual introduction to finite element modeling and its clinical applications to bone that is written for individuals without any background in engineering. Finite element modeling of bone is the net result of over 60 years of effort in the engineering community and over 40 years of effort in the field of bone biomechanics. We discuss the mathematical and theoretical basis for finite element modeling, how finite element models are created from clinical images and the assumptions made in using finite element models to estimate whole bone strength. In addition, we discuss the limitations of finite element modeling in patient populations with altered bone tissue quality. Clinical studies have shown that prediction of fracture risk using finite element modeling is as effective, and in some cases superior, to simple measures of bone mineral density. Further application of finite element modeling to clinical studies has the potential to improve fracture risk assessment beyond what is currently possible with bone mineral density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.