Abstract

In this study the selection of in vivo predictive in vitro dissolution experimental set-ups using a multivariate analysis approach, in line with the Quality by Design (QbD) principles, is explored. The dissolution variables selected using a design of experiments (DoE) were the dissolution apparatus [USP1 apparatus (basket) and USP2 apparatus (paddle)], the rotational speed of the basket/or paddle, the operator conditions (dissolution apparatus brand and operator), the volume, the pH, and the ethanol content of the dissolution medium. The dissolution profiles of two nifedipine capsules (poorly soluble compound), under conditions mimicking the intake of the capsules with i. water, ii. orange juice and iii. an alcoholic drink (orange juice and ethanol) were analysed using multiple linear regression (MLR). Optimised dissolution set-ups, generated based on the mathematical model obtained via MLR, were used to build predicted in vitro-in vivo correlations (IVIVC). IVIVC could be achieved using physiologically relevant in vitro conditions mimicking the intake of the capsules with an alcoholic drink (orange juice and ethanol). The multivariate analysis revealed that the concentration of ethanol used in the in vitro dissolution experiments (47% v/v) can be lowered to less than 20% v/v, reflecting recently found physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.