Abstract

Along with water, gas, electricity, and telephone, cloud computing has been considered as the fifth utility. Like other utility services available in today's social computing services are readily available on demand (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). The purpose of the study is to develop a hybrid two-stage, structural equation modeling (SEM) – artificial neural network (ANN) model to predict motivators affecting cloud computing adoption services in the Indian private organizations. This research article proposes a new paradigm by extending the Technology Organization Environment Model (TOE) with external factors, namely, perceived IT security risk and risk analysis for the first time in a technology adoption study. One of the core contributions of the study is the introduction of new factors, perceived IT security risk and risk analysis. Data were collected from 660 professional experts and analyzed using structural equation modeling (SEM) and artificial neural network (ANN) modeling. The SEM results showed that perceived IT security risk (PITR), risk analysis (RA), technology innovation (TI), management style (MS) and trust (T) have a significant influence on cloud computing adoption. The only exceptions were the usage of technology (UT) and industry usage (IU) which witnessed statistically insignificant influence on cloud computing adoption. Furthermore, the results obtained from SEM were employed as input to the artificial neural network (ANN) model and results showed that ‘trust’, ‘perceived IT security risk’, and ‘management style’ as most important predictors in cloud computing adoption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.