Abstract

Constraint satisfaction problems have wide application in artificial intelligence. They involve finding values for problem variables where the values must be consistent in that they satisfy restrictions on which combinations of values are allowed. Recent research on finite domain constraint satisfaction problems suggest that Maintaining Arc Consistency (MAC) is the most efficient general CSP algorithm for solving large and hard problems. In the first part of this paper we explain why maintaining full, as opposed to limited, arc consistency during search can greatly reduce the search effort. Based on this explanation, in the second part of the paper we show how to modify MAC in order to make it even more efficient. Experimental results prove that the gain in efficiency can be quite important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.